
CSCI2510 Computer Organization

Lecture 11: Pipelining

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

Reading: Chap. 8 (5th Ed.)

mailto:mcyang@cse.cuhk.edu.hk


Why We Need Pipelining?

• Real-life example: 

Four loads of 

laundry that need 

to be washed, 

dried, and folded.

– Washing: 30 min

– Drying: 40 min

– Folding: 20 min

• Without pipeline:

– 360 min in total

• With pipeline:

– 210 min in total!
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https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html



Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar Operation
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Sequential Execution

• The processor fetches and executes instructions, one 

after the other.

– Fi: Fetch steps for instruction Ii

– Ei: Execute steps for instruction Ii

• Execution of a program consists of a sequential 

sequence of fetch and execute steps:

• How to improve the speed of execution?

– Use faster technologies to build CPU and memory ($$$).

– Arrange hardware to do multiple operations at a time ($).
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Separate HW & Interstage Buffer

• Consider a computer having two separate hardware 

units:

– One hardware unit is for fetching instructions.

– The other hardware unit is for executing instructions.

• Interstage Buffer: Deposit the fetched instruction.

– Execution unit executes the deposited instruction.

– Fetch unit fetches the next instruction at the same time.
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• Assume the computer is controlled by a clock.

– The fetch and execute steps of any instruction can be 

completed in one clock cycle.

• Fetch and execute units form a two-stage pipeline:

– Both units are kept busy all the time.

– An interstage buffer is needed to hold the instruction.
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Basic Idea of Instruction Pipelining (1/2)
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• Parallelism is increased by overlapping the fetch and 

execute steps.

– If executions sustain for a long time, the completion rate of 

a two-stage pipelining will be twice.

• More is better? How about 4-stage pipeline?

– F: Fetch instruction from memory

– D: Decode instruction and fetch source operands

– E: Execute instruction

– W: Write the result
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Basic Idea of Instruction Pipelining (2/2)



F
Fetch
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4-Stage Pipeline (1/2)

CSCI2510 Lec11: Pipelining 8

F 4I4

F 1

F 2

F 3

I1

I2

I3

D1

D2

D3

D4

E 1

E 2

E 3

E 4

W1

W2

W3

W4

Instruction

Clock cycle 1 2 3 4 5 6 7

E
Execute

operation

W
Write
results

Interstage buffers

B1 B2 B3

Time



4-Stage Pipeline (2/2)

• The four hardware units perform their tasks 

simultaneously without interfering others.

– The required information is passed from one unit to the 
next through an interstage buffer.

• Each stage should be roughly the same maximum 

clock period.

– Why? A unit that completes its task early is idle for the 

remainder of the clock period.
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Class Exercise 11.1

• During clock cycle 4, what is the information hold by 

the three interstage buffers (i.e., B1, B2, and B3) 

respectivley?
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Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar Operation
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Reality: Pipeline may Stall

• If any pipeline stage requires more than 1 cycle, 

others have to wait (pipeline stalled).

– E.g. E2 requires three cycles to complete
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Stall & Hazard

• Hazard: Any condition that causes pipeline to stall.

• Another example: A cache miss occurs in F2:

Figure: Instruction execution steps in successive clock cycles.

Figure: Statuses of processor stages in successive clock cycles.
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Types of Hazards

• Data Hazard

– Either the source or the destination operands of an 

instruction are not available when required.

• Instruction Hazard

– A delay in the availability of an instruction (this may 

be a result of a miss in the cache).

• Structural Hazard

– Two instructions require the use of a given 

hardware resource at the same time.
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Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar Operation
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Data Hazard
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I1: A = 3 * A;

I2: B = 4 + A;
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• A data hazard is a situation in which the pipeline is 

stalled because the operands are delayed.

• Example:

– Dependent operations must be performed sequentially to 

ensure the data consistency.



Class Exercise 11.2

• Please specify whether we will encounter data 

hazards for the following instructions.
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I1: A = 5 * C;

I2: B = 20 + C;

I1: C = A * B;

I2: E = C + D;



Software Solution to Data Hazard

• The compiler detects and introduces two-cycle delay

by inserting NOP (No-operation) instructions.

– Advantage: Simpler hardware, less cost

– Disadvantage: Larger code size, less flexibility, and 

reduced performance
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Hardware Solution to Data Hazard (1/2)

• The data hazard arises because I2 is waiting for data 

to be written in the register A.

• In fact, the result of I1 is available at the output of ALU.

• Delay is reduced if the result can be forwarded to E2.
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Hardware Solution to Data Hazard (2/2)

• Operand Forwarding: By introducing the forwarding 

path, the execution of I2 can proceed without stalling.

– Disadvantage: Additional hardware cost

CSCI2510 Lec11: Pipelining 22

E: Ex ecute
(ALU)

W: Write
(Register file)

SRC1,SRC2 RSL T

(b) Source and result registers

Register

file

SRC1 SRC2

RSL T

Destination

Source 1

Source 2

(a) Datapath (3 buses)

ALU

Port A Port B



Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar Operation
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Instruction Hazard

• Recall: The purpose of the instruction fetch unit is to 

supply the execution units with instructions.

– F: Fetch instruction from memory

– D: Decode instruction and fetch source operands

– E: Execute instruction

– W: Write the result

• Instruction Hazard: The cases cause the pipeline to 

stall, because of the delay of instructions.

1) Cache miss

2) Branch instruction (both unconditional and conditional)
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Instruction Hazard: Cache Miss

• The effect of a cache miss on the pipelined operation 

is as follows:

– I1 is fetched from the cache in cycle 1.

– The fetch operation F2 for I2 results in a cache miss.

• The instruction fetch unit must suspend any further fetch requests until 

F2 is completed.
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• Branches may also cause the pipeline to stall.

– Branch Penalty: The time lost because of a branch inst.

– Branch penalty can be reduced by computing the branch 

address earlier in Decode stage (rather than Execute stage)

• However, it still results in 1 cycle branch penalty to the pipeline.
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Solution to Instruction Hazard

• Instruction Queue: The interstage buffer between 

Fetch and Decode units can keep multiple instructions.

– Fetch unit gets and deposits one instruction at a time.

– Decode unit consumes one instruction at a time.
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F4

W3E 3

F2 D2 E 2 W2

F3 D3

E 4D4 W4F4

• F4, F5, F6, Fk, and Fk+1, are delayed.

• I1, I2, I3, I4, and Ik cannot complete in successive cycles.
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Example: Without Instruction Queue
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• I6 is still being discarded, but the instruction queue can avoid 

delaying F4, F5, F6, Fk, and Fk+1 if the queue is not empty.

• I1, I2, I3, I4, and Ik can complete in successive cycles.
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Example: With Instruction Queue
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Without vs With Instruction Queue

• With instruction queue, the branch instruction does 

not increase the overall execution time (if the queue 

is not empty).

– Since instructions can complete in successive clock cycles.

• Branch address is computed in parallel with other 

instructions, so no cycles lost due to branch.

– This is called branch folding.

• Instruction queue is also possible to hide the effect of 

cache miss (if the queue is not empty).
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Class Exercise 11.3

• Please show how instruction queue can hide the 

effect of cache miss (three cycles) caused by F4.
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All intermediate instructions
must be discarded …

• Branch folding is not working for conditional branches.

• Conditional branches may result in added hazard.

– Since the condition is based on the preceding instruction.

• Example:
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Instruction Hazard: Conditional Branch
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Solution 1) Delayed Branch (1/2)

• The location following a 

branch instruction is 

called a branch delay slot.

• Delayed branching can 

minimize the penalty by

– Placing useful instructions 

in branch delay slots, and

– Internally re-ordering the 

instructions.
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Solution 1) Delayed Branch (2/2)

• Delayed branching can minimize the branch penalty.
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Solution 2) Branch Prediction (1/2)
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Solution 2) Branch Prediction (2/2)

• Static Branch Prediction

– The same choice is used every time the conditional branch 

is encountered.

– For example, a branch instruction at the end of a loop 

causes a branch to the start of the loop for every pass 

through the loop except the last one.

• It is helpful to assume this branch will be taken under this case.

– A flexible approach is to have the compiler decide.

• Dynamic Branch Prediction

– The choice is influenced by the past behavior.

– For example, a simple prediction is to use the result of the 

most recent execution of the branch instruction.
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Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar Operation
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Structural Hazard

• A structural hazard is the situation when two 

instructions require the use of a hardware resource at 

the same time.

• The most common case is in accessing to memory.

– Case 1: One instruction is accessing memory during the 

Execute or Write stage; while another is being fetched.

– Solution 1: Many processors use separate instruction and 

data caches to avoid this delay.

– Case 2: Another example is when two instructions require 

access to the register file at the same time.

– Solution 2: Let the register file have more input/output ports.

• In general, the structural hazard can be avoided by 

providing sufficient hardware resources ($$$).
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Class Exercise 11.4

• What is the cause of the following structure hazard?

CSCI2510 Lec11: Pipelining 40



Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar Operation
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Superscalar Operation (1/2)

• Superscalar: Execute multiple instructions at any 

time via multiple processing units (i.e., we can 

execute more than one instruction per cycle)
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Superscalar Operation (2/2)

• Superscalar operation may result in out-of-order 

execution, and cause data consistency issue.

– In our previous example, I1 and I2 are dispatched in the 

same order as they appear.

– However, their execution is completed out of order.

– To guarantee a consistent state when out-of-order 

execution occur, the results of the execution of instructions 

must be written in program order strictly .

• The out-of-order execution is also a common 

technique to make use of instruction cycles by re-

ordering instructions.

– E.g., Delayed branching reorders the instructions to 

minimize the branch penalty.
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Out-of-Order Execution

R1  mem[r0] /* Instruction 1 */

R2  R1 + R2 /* Instruction 2 */

R5  R5 + 1 /* Instruction 3 */

R6  R6 – R3 /* Instruction 4 */

• Instruction 1 results in a cache miss, and a cache 

miss can stall entire processor for 20-30 cycles.

• Instruction 2 cannot be executed since it needs R1.

• In instruction queue, look ahead and find instructions 

3 and 4 to execute first (reordering).

R1  mem[r0] /* Instruction 1 */

R5  R5 + 1 /* Instruction 3 */

R6  R6 – R3 /* Instruction 4 */

R2  R1 + R2 /* Instruction 2 */
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Summary

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar Operation
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