CSCI2510 Computer Organization
Lecture 11: Pipelining

Ming-Chang YANG
mcyang@cse.cuhk.edu.h!(

e

COMPUTER B e e - - 1 0 s - I T §O e e e e
. ORGANIZATION “.’ P, I T = e \ + mi — i R : B ::’
. ; et & s ol [ipepe pipe

bbbbb
bbbbbb

mailto:mcyang@cse.cuhk.edu.hk

Why We Need Pipelining?

° Qeal_life example: Brl'o"l { 8 9 10 11 I"o‘lid}night
— Tirme
—ourdloatis tof | 30'@5'30'4:1 TR TETIPTLT]
aundry that need '’ 55;.: ;
7 7
to be washed, : =
dried, and folded. © & =/
— Washing: 30 min ¢ 5 =5
: : "y o7
— Drying: 40 min 6PM 7 8 9 10 11 Midnight
— Folding: 20 min | - Tmie | "
: : : 30 40 40 40 40 20
« Without pipeline - Eéiﬁiia;
— 360 min in total ; =
. L SPA7
* With pipeline: ° & =5
_ 210 min in totall ¢ ==
LB =5

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html

CSCI2510 Lec1l: Pipelining 2

Outline

» Sequential Execution vs Pipelining

* Pipeline Stall: Hazard
— Data Hazard
— Instruction Hazard

— Structural Hazard

« Superscalar Operation

CSCI2510 Lec1l: Pipelining 3

Sequential Execution

* The processor fetches and executes instructions, one
after the other.
— F;: Fetch steps for instruction .
— E;: Execute steps for instruction I,

« EXxecution of a program consists of a sequential
sequence of fetch and execute steps:

— = [ime

F, E, F, E, F, E,

 How to improve the speed of execution?
— Use faster technologies to build CPU and memory ($$$).

— Arrange hardware to do multiple operations at a time ($).
CSCI2510 Lec1l: Pipelining 4

Separate HW & Interstage Buffer

« Consider a computer having two separate hardware

units:

— One hardware unit is for fetching instructions.

— The other hardware unit is for executing instructions.

* Interstage Buffer: Deposit the fetched instruction.
— Execution unit executes the deposited instruction.
— Fetch unit fetches the next instruction at the same time.

Instruction
Fetch
Unit

Interstage buffer

>

Instruction

>

Instruction
Execution
Unit

CSCI2510 Lec1l: Pipelining

Basic Idea of Instruction Pipelining (1/2)

« Assume the computer is controlled by a clock.

— The fetch and execute steps of any instruction can be
completed in one clock cycle.

« Fetch and execute units form a two-stage pipeline:
— Both units are kept busy all the time.
— An interstage buffer is needed to hold the instruction.

Clock cycle 1 2 3 4 —— Time

Instruction

I Fi E,

CSCI2510 Lec1l: Pipelining 6

Basic Idea of Instruction Pipelining (2/2)

« Parallelism is increased by overlapping the fetch and
execute steps.

— If executions sustain for a long time, the completion rate of
a two-stage pipelining will be twice.

* More Is better? How about 4-stage pipeline?
— F: Fetch instruction from memory
— D: Decode instruction and fetch source operands
— E: Execute Instruction
— W: Write the result

CSCI2510 Lec1l: Pipelining 7

4-Stage Pipeline (1/2)

Clock cycle 1 2 3 4 5 6 7
Instruction

|1 F1 D1 E1 Wl

|2 F D, E» W,

3 Fs Ds Es W3

|4 F4 D4 E4 W4

Interstage buffers

W

F
Fetch 1 [Decode [| Execute | "1 Write
instruction instruction operation results
Bl B2 B3

CSCI2510 Lec1l: Pipelining

4-Stage Pipeline (2/2)

* The four hardware units perform their tasks
simultaneously without interfering others.

— The required information is passed from one unit to the
next through an interstage buffer.

« Each stage should be roughly the same maximum
clock period.

— Why? A unit that completes its task early is idle for the
remainder of the clock period.

CSCI2510 Lec1l: Pipelining

Student ID:

Class Exercise 11.1 pow

« During clock cycle 4, what is the information hold by
the three interstage buffers (i.e., B1, B2, and B3)

respectiviey?

Clock cycle 1 2 3¢ 4 5 6 7 — Time
|1 Fq D, E. W, :
12 o | Dl Es [ows
13 Fs D; Es | Ws
l4 Fo |i Do | Ea | Wa

F D E w
Fetch [" Decode [[*| Execute | [~ Write
instruction instruction operation results
Bl B2 B3

CSCI2510 Lec1l: Pipelining 10

Outline

* Pipeline Stall: Hazard

CSCI2510 Lec1l: Pipelining 12

Reality: Pipeline may Stall

 If any pipeline stage requires more than 1 cycle,
others have to wait (pipeline stalled).

— E.g. E, requires three cycles to complete

—» Time
Clock cycle 1 2 3 4 5 6 7 8 9
Instruction
In cycles 5 and 6: Write, Decode and
Il Fl Dl El W 1 . . .
Fetch units must wait and do nothing ...
— - —_—
I \
1>) D, E, NI
<—*
I3 Fs D, Es W,
E_—_—_—_—————— — I'A \
|4 F4 \ D 4 ’ E4 W 4
S — ﬂ — v’
> —
l \
s \ F5 | D 5 E5
—_— — 7’

CSCI2510 Lec1l: Pipelining 13

Stall & Hazard

« Hazard: Any condition that causes pipeline to stall.
Another example: A cache miss occurs in F:

—= Time
Clock cycle 1 2 3 4 5 6 7 8 9
Instruction
I F1 Dy E; Wy
P F, D, E W,
I3 F3 D3 Es W3

Figure: Instruction execution steps in successive clock cycles.

— Time

Clock cycle 1 2 3

4 5 6 7 8 9
Stage
F: Fetch Fy F, Fy Fy F, F3
D: Decode D, idle idle idle D, D,
E: Execute E; idle idle idle E, Es
W: Write

W1 idle idle idle W2 W3

Figure: Statuses of processor stages in successive clock cycles.
CSCI2510 Lec1l: Pipelining

14

Types of Hazards

e Data Hazard

— Either the source or the destination operands of an
Instruction are not available when required.

 Instruction Hazard

— A delay in the avallability of an instruction (this may
be a result of a miss in the cache).

 Structural Hazard

— Two Instructions require the use of a given
hardware resource at the same time.

CSCI2510 Lec1l: Pipelining 15

Outline

* Pipeline Stall: Hazard

— Data Hazard

CSCI2510 Lec1l: Pipelining 16

Data Hazard

« Adata hazard is a situation in which the pipeline is
stalled because the operands are delayed.

* Example: i A=3%A;
L,:B=4+A;
2
—= Time
Clock c ycle 1 2 3 4 5 6 7 8 9
Instruction
1, (Mul) Fi D, | E; | w, Pipeline is stalled for two cycles.
_____ B D: Decode and fetch
F D D E W
2 (Add) : i N > | source operands
I3 F3 D5 Es W,

Iy Fq Dy Eg | Wy

— Dependent operations must be performed sequentially to
ensure the data consistency. 17

Class Exercise 11.2

* Please specify whether we will encounter data
hazards for the following instructions.

,:A=57*C; ,: C=A*B;
l,: B =20+ C; l,: E=C + D;

CSCI2510 Lec1l: Pipelining 18

* The compiler detects and introduces two-cycle delay
by inserting NOP (No-operation) instructions.

— [ime
Clock c ycle 1 2 3 4 5 6 7 8 9
Instruction
1. (Mul) F D E W I1:A:3*A;
1 Wi 1 1 1 1
,b:B=4+A;
- - T - TT-T=-====== |
NOP : :
- - TTTT-T T === === |
NOP | :
|, (Add)) D, E, W,

— Advantage: Simpler hardware, less cost

— Disadvantage: Larger code size, less flexibility, and
reduced performance

Question: Do we really avoid the pipline stalling?

Hardware Solution to Data Hazard (1/2)i%

* The data hazard arises because I, Is waiting for data
to be written in the register A.

* In fact, the result of |, is available at the output of ALU.
» Delay is reduced if the result can be forwarded to E,

-| Result of 1, is available here!

—e Time
Clock c ycle 1 2 3 4 5 6 7 8 9
Instruction v *
l;: A=3*A;
I, (Mul) F D E W . _ .
1 R N i B=4+A;
V- D: Decode and fetch
I, (Add F D D,. E W
2 (Add) : i N > | source operands
I3 Fs D, Es W
g Fq Dy Eg | Wy

CSCI2510 Lec1l: Pipelining

21

Hardware Solution to Data Hazard (2/2):

 Operand Forwarding: By introducing the forwarding
path, the execution of I, can proceed without stalling.

— Disadvantage: Additional hardware cost

— [ime
Clock cycle 1 2 3 4 5
Source 1 Instruction
Source 2]
\
| SRC1 | | SRC2 | v
, (Add) Fo | Do | B2 | Wp

i i

I
[
[
I
[
[
I
[
[
Register Port A Port B I
file [[I Src1,SRC2 RSL T
[
I
[
[
I
[
[
I
[
[
I

HAEY

RSLT

A
E: Ex ecute W: Write
>| > (ALV) :>| :> (Register file)

Destination y

(a) Datapath (3 buses) ' (b) Source and result registers
CSCI2510 Lec1l: Pipelining 22

Outline

* Pipeline Stall: Hazard

— Instruction Hazard

CSCI2510 Lec1l: Pipelining 23

Instruction Hazard

* Recall: The purpose of the instruction fetch unit is to
supply the execution units with instructions.

F D E W
Fetch ["1 Decode [™| Execute | " Write
instruction instruction operation results
Bl B2 B3

— F: Fetch instruction from memory

— D: Decode instruction and fetch source operands
— E: Execute instruction

— W: Write the result

* Instruction Hazard: The cases cause the pipeline to
stall, because of the delay of instructions.
1) Cache miss

2) Branch instruction (both unconditional and conditional)
CSCI2510 Lec1l: Pipelining 24

Instruction Hazard: Cache Miss

* The effect of a cache miss on the pipelined operation

IS as follows:
— Time

Clockcycle 4 2 3 4 5 6 7 8 9
Instruction

|1 F1 Dl El Wl

|2 Fz D2 E2 WZ

A ' Postponed
E S R > R D3 Es W3

— |, Is fetched from the cache in cycle 1.

— The fetch operation F, for I, results in a cache miss.

* The instruction fetch unit must suspend any further fetch requests until
F, is completed.

CSCI2510 Lec1l: Pipelining 25

Instruction Hazard: Unconditional Branch

* Branches may also cause the pipeline to stall.
— Branch Penalty: The time lost because of a branch inst.

— Branch penalty can be reduced by computing the branch
address earlier in Decode stage (rather than Execute stage)

* However, it still results in 1 cycle branch penalty to the pipeline.
1

|k+1 I:k+1 Dk+1 Ek+1

Branch address computed in Execute stage
Branch Penalty: 2 clock cycles

Branch address computed in Decode stage
Branch Penalty: 1 clock cycle

—— Time — Time
Clock cycle 1 2 3 4 5 6 71 8 : Clock cycle 1 2 3 4 5 & 7
I Fy D, Ey W, : I Fa Dy Ey W,
1
I, (Branch to 1) F2 | D, | E, j '2(Branchtol,) F, D,
______ I S :
| - 5 v - N O.nIyI3|s
3 3 3 ! | 5 3 i
------ l; and |, must be I ------' discarded
______ o
I, F, | x 1 discarded I, Fe | o, | e | w,
------ |
|
L Fe | Du | Ex | Wk e Fre1 | Dien| Eken
1
|
|
1
|
|

CSCI2510 Lec1l: Pipelining 26

Solution to Instruction Hazard

 Instruction Queue: The interstage buffer between
Fetch and Decode units can keep multiple instructions.
— Fetch unit gets and deposits one instruction at a time.
— Decode unit consumes one instruction at a time.

Instruction queue

F
Fetch ——
instruction

l

D E W
Decode |p—=| |I—=| Execute |—==| |—= Write
instruction operation results

- Interstage buffers
CSCI2510 Lec1l: Pipelining 27

Example:

. . . . : ! — = Time
Clock cycle 1 2 3 4 5 6 = 7 8 9 ¢ 10, 11, 12
: L
[[
[[:
I | : .
|1 |Z1 D1 E1 E1 E1 W1 @ N TT T T T T TT " TT TR T LTI IT Ir:E |nStI’UCtI0n 1 takes 3
__________ - ! . Execute cycles (i.e., 2-
B BN N LB W S cycle stall).
__________ e ——— [[
I3 Fs : D, : Es W3 : :
---------- =l] [[.
.............. 1 T | | E . .
|4 F4 ;: F4 I D4 E4 W4 € s : :..E Instructlon 4 IS delayed
5 2l I I :
|5 (Branch to Ik) F5 D5 @ : :i. Instructlon 5 |S a branch .
Since thereisno oo _ o
I instruction queue! Fe ___X___E< Ir Ir,, Instruction 6 is discarded.
I F Dy Ee | Wi

E

le 1 Fren k+1

- F, Fc, Fg F,and F,,,, are delayed.
., I, 15, 15, and |, cannot complete in successive cycles.

CSCI2510 Lec1l: Pipelining 28

Example:

Clock cycle 1 2 3 4 5 6:i 7% 8% 9 i 10i
Queuelength 1 1 1 2 @ 2 @ 1 i1 i 1
’ F, D, E, E, E, | W, fe ,, , Instruction 1 takes 3
__________ - :f i Execute cycles (i.e., 2-
1, P LB W P cycle stall),
I3 Fs Dj Es W
I, Fa | Ds4 Ea | W, The queue length rises to
.. : 3 before cycle 6.
|5 (BranCh to Ik) 0‘.00 F5 D5 4..E |nStrUCt|On 5 IS a branch .
Keep . :
I fetching .’.00 Fe X E<.E. |nstruct|0n 6 |S dlscarded’
. — : after taking Branch.
Iy R I I The queue length drops to
1 before cycle 8.
Ik+1 ‘ I:k+1 Dk+1 Ek+1

* |g Is still being discarded, but the instruction queue can avoid
delaying F,, F:, F¢, F, and F,,, If the queue is not empty.

l,, I,, 15, 15, and |, can complete in successive cycles.
CSCI2510 Lec1l: Pipelining 29

VS Instruction Queue

« With instruction queue, the branch instruction does
not increase the overall execution time (if the queue
IS not empty).

— Since instructions can complete in successive clock cycles.

* Branch address is computed in parallel with other
Instructions, so no cycles lost due to branch.

— This is called branch folding.

* Instruction queue Is also possible to hide the effect of
cache miss (if the queue is not empty).

CSCI2510 Lec1l: Pipelining 30

Class Exercise 11.3

« Please show how instruction queue can hide the
effect of cache miss (three cycles) caused by F,.

. ; — = Time
Clock cycle 1 2 3 4 5 6 = 7 : 8 : 9 10 11 12

| Fl Dl E1 E1 E1 Wl

Without , F, | D, E, | w,
Instruction _
Queue E i s | Bs [W
Iy
. . . — = Time
Clock cycle 1 2 3 4 5 6 : 7 : 8 1 9 10 11 12
Queue length 1 1 1
Iy Fy D, Ey Ey Ey W,
Wlth I, F, D, E, w,
Instruction 0 —— _
Queue '3 s il IR B

CSCI2510 Lec1l: Pipelining 31

Instruction Hazard: Conditional Branch

« Branch folding is not working for conditional branches.

« Conditional branches may result in added hazard.
— Since the condition is based on the preceding instruction.
« Example:

LOOP Shift_left R1 R2 is used as the
Decrement R2 branch condition.
Branch=0 LOOP
NEXT Add R1,R3
Clock cycle 1 2 3 4 5 6 7 8 9 10 — Time
1, (Shift) Fr [D [B | Wy .
We need to wait for R2 to
I, (Decrement) P Do | B2 | W determine whether to perform

|, (Branch if R2 = 0) F, | D, the conditional branching.

D3—R2

All intermediate instructions
must be discarded ...

LOOP I, Fe Dy Ee | Wy
CSCI2510 Lec1l: Pipelining

33

Solution 1) Delayed Branch (1/2)

* The location following a L00P Shift left R1
branch instruction iIs Decrement R2
Branch=0 LOOP
called a branch delay slot. Branch Delay Slot
NEXT Add R1,R3

(a) Original program loop

* Delayed branChing can LOOP Decrement R2
minimize the penalty by Branch=0 Loop
: : : Shift_left R1
— Placing useful instructions NEXT Add RLR3
In branch delay slots, and
i (b) Internally Re-ordered instructions
_ Internally re'ordermg the (actual program logic NOT affected)

Instructions.

CSCI2510 Lec1l: Pipelining 34

« Delayed branching can minimize the branch penalty.

Clock cycle 1 2
Instruction

Decrement F D
Branch=0? F

Shift (delay slot)

Decrement (Branch is taken)

Branch=07?

Shift (delay slot)

NEXT: Add (Branch not taken)

CSCI2510 Lec1l: Pipelining

3 4 5 6 7 8 9 10 ——=Time
LOOP Decrement R2
Branch=0 LOOP
Shift_left R1
E W NEXT Add R1,R3
D,qq | (8t branch address) ALU
: Result
F D E w | i Forwarding
» F D E W
F D_44, | (get branch address) ALU
: Result
= D E w | i Forwarding
» F D E W

35

« Attempt to predict
whether conditional
branch will take place.

— Delayed branch can
be applied together.

Branch Prediction:

— If we get it right: no
lost cycles.

* Registers and memory

cannot be updated until

Clock cycle 1 2 3 4 5 6
Instruction
I, (Compare) Fq D, Eq W,
I, (Branch>0) F, |D,/Py| E,
I3 (Branch Delay Slot) F3 Ds X

4 Correct Prediction 1
| Fi Dy

RN | corcctPredicton |

— If we get it wrong, just

cancel the instructions.

— Branch prediction can
be dynamic or static.

14
1
1

1
.y
1

Solution 2) Branch Prediction (2/2)

e Static Branch Prediction

— The same choice is used every time the conditional branch
IS encountered.

— For example, a branch instruction at the end of a loop
causes a branch to the start of the loop for every pass
through the loop except the last one.

* Itis helpful to assume this branch will be taken under this case.

— Aflexible approach is to have the compiler decide.

 Dynamic Branch Prediction
— The choice is influenced by the past behavior.

— For example, a simple prediction is to use the result of the
most recent execution of the branch instruction.

CSCI2510 Lec1l: Pipelining 37

Outline

* Pipeline Stall: Hazard

— Structural Hazard

CSCI2510 Lec1l: Pipelining 38

Structural Hazard

« A structural hazard is the situation when two
Instructions require the use of a hardware resource at
the same time.

 The most common case Is in accessing to memory.

— Case 1: One instruction is accessing memory during the
Execute or Write stage; while another is being fetched.

— Solution 1: Many processors use separate instruction and
data caches to avoid this delay.

— Case 2: Another example is when two instructions require
access to the reqister file at the same time.

— Solution 2: Let the register file have more input/output ports.

 In general, the structural hazard can be avoided by
providing sufficient hardware resources ($$9$).

CSCI2510 Lec1l: Pipelining 39

Class Exercise 11.4

 What is the cause of the following structure hazard?

Time (in clock cycles)

-

cc1 : cc2 cca i ccs i cce i cev i ccs

Ert

: CC3 i
-g 51
Load Mem : : Reg : ly 7 Mem [~ /7% Reg :

.
.
.
.
.
.
.

Instruction 1 Mem T Reg : V (Mem & Reg :

Instruction 2 P | Mem _E‘ ! R : 3

T eg : ; / Mem / Reg

—_— | Ny i P p———

. - : : -

Instruction 3 Mam : : Reg g # ,; Mem / Reg §
: >

Instruction 4 Mem it Reg l;‘ 7 Mem 7

CSCI2510 Lecl1: Pipelining 40

Outline

« Superscalar Operation

CSCI2510 Lec1l: Pipelining 42

Superscalar Operation (1/2)

« Superscalar: Execute multiple instructions at any
time via multiple processing units (i.e., we can
execute more than one instruction per cycle)

. . — Time
_ Fetch two instructions
F: Instruct[on at a time Clock cycle 1 2 3 4 5 6
fetch unit
| Instruction
Instruction
vee queue I, (FracAdd) Fy D, Ein Eis Eic W,
I, (Add) F, D, E, | W,
Floating-
Y - — point ——
unit
Decode two Decode /
instructions Dispatch W : Write
at a time unit results
| Integer I j

unit

CSCI2510 Lec1l: Pipelining 43

Superscalar Operation (2/2)

« Superscalar operation may result in out-of-order
execution, and cause data consistency issue.

— In our previous example, |, and |, are dispatched in the
same order as they appear.

— However, their execution is completed out of order.

— To guarantee a consistent state when out-of-order
execution occur, the results of the execution of instructions
must be written in program order strictly .

* The out-of-order execution is also a common
technigue to make use of instruction cycles by re-
ordering instructions.

— E.g., Delayed branching reorders the instructions to

minimize the branch penalty.
CSCI2510 Lec1l: Pipelining 44

Out-of-Order Execution

Rl € mem[rO] /* Instruction 1 */
R2 € R1 + R2 /* Instruction 2 */
R5 € R5 + 1 /* Instruction 3 */
R6 € R6 — R3 /* Instruction 4 */

 |Instruction 1 results in a cache miss, and a cache
miss can stall entire processor for 20-30 cycles.

e |nstruction 2 cannot be executed since it needs R1.

 In instruction queue, look ahead and find instructions
3 and 4 to execute first (reordering).

Rl € mem[rO] /* Instruction 1 */
R5 € R5 +1 /* Instruction 3 */
R6 € R6 — R3 /* Instruction 4 */
R2 € Rl + R2 /* Instruction 2 */

CSCI2510 Lec1l: Pipelining 45

Summary

» Sequential Execution vs Pipelining

* Pipeline Stall: Hazard
— Data Hazard
— Instruction Hazard

— Structural Hazard

« Superscalar Operation

CSCI2510 Lec1l: Pipelining 46

